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Abstract

A finite strip Fourier p-element for the in-plane vibration analysis of plate is presented. Trignometric functions are used

as enriching functions instead of polynomials to avoid ill-conditioning problems. With the additional Fourier degrees of

freedom (dofs) and reduce dimensions, the accuracy of the computed natural frequencies is greatly increased. Numerical

examples show that convergence is very fast with respect to the number of trignometric terms. Comparison of natural

frequencies calculated by the finite strip Fourier p-element, the Fourier p-element, the finite strip and the conventional

finite elements is carried out. The results show that the finite strip Fourier p-element can obtain much higher accurate

modes than the Fourier p-element, the finite strip and the conventional finite elements.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The finite element method achieves an approximate solution by subdividing the domain of interest into a
number of smaller sub-domains, called finite elements, and then approximating the solution by using local,
piecewise continuous polynomial functions within each element. The accuracy of the solution may be
improved in two ways. The first is the h-version to refine the finite element mesh and the second is the p-version
to increase the order of polynomial shape functions for a fixed mesh. Zienkiewicz and Taylor [1] concluded
that, in general, p convergence is more rapid per degree of freedom (dof) introduced. Central to the
hierarchical concept is the ability to enrich the polynomial content of selected elements within the mesh.
Polynomial functions are well known to be ill-conditioned, e.g., the computer can hardly find the difference
between x10 and x11 within 0oxo1. West et al. [2] showed recently that, by reference to an appropriate family
of K-orthogonal polynomials, numerical rounding errors associated with floating point arithmetic prescribe
the maximum available degree of polynomial enrichment. The principal source of these errors can be traced to
the widely ranged coefficients that define a given K-orthogonal polynomial. In a p-version finite element
method, the trignometric functions are more effective in predicting the medium- and high-frequency modes
than polynomials both in precision and in avoiding the ill-conditioning problems. The Fourier-p version
elements are popular for the dynamic problems. Leung and Chan [3] gave the trignometric shape functions for
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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the axial vibration analysis of a two-node bar. Leung et al. [4] adopted trapezoidal Fourier p-element for the
in-plane vibration analysis of two-dimensional elastic solids.

Cheung [5] proposed the finite strip method for structural analysis of prismatic domain problems and in
contrast to discretize all domains as commonly carried out in FEM, only the transverse cross section is
discretized. However, along the longitudinal coordinate, the functions and their differential are still
continuous and smooth. Thus, the method is regarded as a semi-analytical method. The method may be
reduced from three dimensions to two dimensions and two dimensions to one dimension, so it can save more
time and makes the calculation results more accurate.

In this paper, we combine the finite strip method with the Fourier p-element method, to calculate the
frequencies of plate.
2. Formulation

2.1. Shape function

The plate is imagined to be separated into a small number of strips, each strip having a constant thickness of
its own (Fig. 1). Considering a typical strip defined by the sides i and j, it can be seen that a function

w ¼
X

Ne
md

e
m, (1)

where Ne
m is the shape function satisfies the boundary conditions, and de

m ¼ f
wim yim wjm yjm wp gT,

p ¼ 1; 2; . . . is the vector of nodal displacement for finite strip Fourier p-element. wp represent internal
displacement and are to be eliminated before assembling element matrix. It will be noticed that if the function
w is defined for all the strips in the region, no discontinuities in its value and its slopes will occur along
the imaginary boundary lines. Leung et al. [3] adopted the Fourier-enriched shape functions f iðzÞ ¼
½1� z; z; sinðppzÞ�, ðp ¼ 1; 2; . . .Þ to analyze the axial vibration of a two-node bar. The sine functions represent
internal dofs. When considering the bending of a plate, the appropriate shape functions of the finite strip
Fourier p-element method are

Ne
m ¼ Y mðyÞ 1�
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ðp ¼ 1; 2; . . .Þ, (2)

where Y mðyÞ is a series to satisfy the boundary conditions. Since the in-plane free vibration of plate is a truly
two-dimensional problem, the shape functions Ne

m may reduce from two dimensions to one dimension to the
in-plane free vibration of plate. For two opposite edges simplify or clamped supported boundary conditions,
Y mðyÞ is
Boundary 

Condition

a

b i j

x

y

w

Fig. 1. A typical strip and an arbitrary problem.
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(a)
 two opposite edges simplify supported,

Y mðyÞ ¼ sin
mmy

b
; mm ¼ mp; m ¼ 1; 2; . . . ;1 (3a)
(b)
 two opposite edges clamped supported

Y mðyÞ ¼ sin
mmy

b
� sinh

mmy

b
�

sin mm � sinh mm

cos mm � cosh mm

cos
mmy

b
� cosh

mmy

b

� �
, (3b)

mm ¼ 4:730; 7:8532; 10:9960; . . . ;
2mþ 1

2
p; m ¼ 1; 2; . . . ;1.
For the other boundary conditions, Y mðyÞ were given in Ref. [5].

2.2. Stiffness matrix and mass matrix

The strains of the plate strip are given by [6]

e ¼ �z
q2w
qx2

;
q2w
qy2

; 2
q2w

qxqy

( )T

. (4)

Substituting Eq. (4) into the strain equations (4), as

e ¼
X

Be
md

e
m, (5)

where Be
m is the strain matrix of the element. For the harmonic vibration of the plane problems, the stiffness

matrix and the mass matrix of the element are obtained by applying the principle of minimum potential energy
and the Hamilton’s principle, respectively,

Ke
m ¼

Z
V

Be
m
T
DBe

m dV ¼

Z h=2

�h=2

Z b

0

Z a

0

Be
m
T
DBe

m dxdydz, (6)

Me
m ¼

Z
V

rNe
m
T
Ne

m dV ¼ rh

Z b

0

Z a

0

Ne
m
T
Ne

m dxdy: (7)

For a plane stress problem, the rigidity matrix is

D ¼ D0

1 m 0

m 1 0

0 0 ð1� mÞ=2

2
64

3
75, (8)

where D0 ¼ E=ð1� m2Þ, with E the Young’s modulus, r the density, h the thickness of the element and m the
Possion’s ratio.

The coefficients of the stiffness matrix and the mass matrix are given in Appendix A.

2.3. Free vibration analysis of structures

For different boundary conditions, Y mðyÞ concrete expression is substituted into the stiffness matrix and the
mass matrix, and the stiffness matrix and the mass matrix of the element is calculated. The stiffness matrix and
the mass matrix thus obtained can be stored in two individual files. These files are later used to compute the
natural frequencies of the plane problems.
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Before assembling the elements, the internal dofs and the dofs on some edges and at corner nodes not
adjacent to other elements can be condensed by exact dynamic condensation [7]. The assembling is carried out
by ensuring that the directions of the common edges are compactable between two adjacent elements. Then,
for free vibrations, one has

½K� lM�u ¼ 0, (9)

where K is the global stiffness matrix of the structure, M is the global mass matrix of the structure, u is the
eigenvector in terms of the master dofs of the structure, and l ¼ o2 is the eigenvalue where o is the natural
frequency of the structure.
3. Numerical examples

To simplify the computation, the trignometric term p is given the same value as q in this paper. The
following several cases of in-plane vibration are used to examine the performance of the new finite strip
Fourier p-element.
3.1. Free vibration of square plates with two opposite edges simplify supported

To study the accuracy of the present elements, a square elastic plate with two opposite edges simplify
supported is studied. The first six modes of m ¼ 1 for a square plate of side b with various boundary
conditions using five sine terms were computed and are tabulated in Table 1. The six boundary conditions are
SSSS, SCSC, SFSF, SCSS, SFSS and SFSC. The non-dimensional frequency factor for the plate is l, where
l2 ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, D ¼ Eh3=½12ð1� n2Þ� its flexural, h is the plate thickness, and Poisson’s ratio n ¼ 0:3. The

results computed by ten finite strip Fourier p-elements with p ¼ q ¼ 5 are compared with the computed results
of Fourier p-element method with p ¼ q ¼ 5 and 10� 10 mesh, the computed results of finite strip method
with a mesh of 10� 1, the computed results of Q4 elements with a mesh of 10� 10 and the exacts in Refs. [8,9]
in Table 1. It can be found that the present method can obtain very high accurate frequencies of the plate.

Table 2 gives the convergence study of the first 8 natural frequency parameters of a square SSSS plate by
means of a different number of sine terms and compares them to the exact solution. It is shown that the
computed results of the present method with p ¼ q ¼ 5 produces extremely good results.
3.2. Free vibration of plates with two opposite edges clamped supported

An elastic plate of b=a ¼ 0:4 with two opposite edges clamped supported is studied. The first five modes of
m ¼ 1 using five sine terms were computed and are tabulated in Table 3. The five boundary conditions are,
respectively, CCCC, CCCS, CCCF, CSCF, and CFCF. The results computed by ten finite strip Fourier p-
elements with p ¼ q ¼ 5 are compared with the exacts in Ref. [9] in Table 3. It can be found that the present
method can obtain very high accurate frequencies of the plate.
3.3. Free vibration of disc

This example is the vibration analysis of a disc with inner radius clamped supported and outer radius
free supported. The parameters of the disc are inner radius r ¼ 0:05m, outer radius R ¼ 0:5m,
E ¼ 196� 109 N=m2, r ¼ 7800 kg=m3 and m ¼ 0:3 (Fig. 2). This disc vibration problem is derived from
the rectangular plate vibration problem by replacing x by r� ri, y by y and a by rj � ri in Eq. (2), then
Y mðyÞ ¼ cos my. The strains of the disc are given by

e ¼ �z
q2w

qr2
;

1

r

1

r

q2w

qy2
þ

qw

qy

� �
;

2

r

q2w
qrqy
�

1

r

qw

qy

� �( )T

. (10)
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Table 1

Comparison of the frequency parameters l2 for square plates with two opposite edges simplify supported (m ¼ 1)

Mode case 1 2 3 4 5 6

SSSS Present 19.7392 49.3482 98.6967 167.7849 256.6000 365.0908

Fourier-p 10� 10 19.7386 49.3475 98.6969 167.7856 256.6010 365.0950

Finite strip 10� 1 19.7387 49.3471 98.6969 167.7854 256.6007 365.0969

Q4 10� 10 19.7276 49.3515 98.7390 168.0306 257.5496 365.6325

Gorman 19.7392 49.3480 98.6960 167.7833 256.6097 365.1754

Leissa 19.7392 49.3480 98.6960 167.7833 — —

SCSC Present 28.9509 69.3269 129.0958 208.3917 307.3159 425.9142

Fourier-p 10� 10 28.9513 69.3279 129.0943 208.3814 307.3286 425.9896

Finite strip 10 � 1 28.9512 69.3283 129.0932 208.3819 307.3311 425.9413

Q4 10� 10 28.9318 69.3621 129.2091 208.9031 308.9896 427.3189

Gorman 28.9509 69.3270 129.0955 208.4036 307.3487 425.8954

Leissa 28.9509 69.3270 129.0955 — — —

SFSF Present 9.6312 16.1349 36.7275 75.3025 133.8221 212.5878

Fourier-p 10� 10 9.6096 16.0807 36.6991 75.2396 133.6734 212.0865

Finite strip 10 � 1 9.6294 16.1013 36.7178 75.2527 133.7942 212.3835

Q4 10� 10 9.5695 15.9715 36.0969 74.7419 132.4663 211.8841

Gorman 9.6314 16.1348 36.7256 75.2834 133.9131 212.4935

Leissa 9.6314 16.1348 36.7256 75.2834 — —

SCSS Present 23.6466 58.6460 113.2296 187.4166 282.2865 398.9184

Fourier-p 10� 10 23.6495 58.6479 113.2132 187.5366 281.7221 397.9603

Finite strip 10 � 1 23.6484 58.6470 113.2202 187.4426 282.1355 398.5386

Q4 10� 10 23.6584 58.8486 112.6058 186.6445 280.5376 395.9961

Gorman 23.6463 58.6464 113.2281 187.3263 282.3865 398.8813

Leissa 23.6463 58.6464 113.2281 — — —

SFSS Present 11.6846 27.7569 61.8699 115.7597 189.7462 284.1469

Fourier-p 10� 10 11.7636 27.9837 62.1885 116.8337 190.8492 285.8261

Finite strip 10� 1 11.7262 27.7832 61.9730 116.2005 190.0343 285.0853

Q4 10� 10 11.8211 28.2835 63.2016 117.4861 192.3689 288.0412

Gorman 11.6845 27.7563 61.8606 115.6857 189.5246 284.4367

Leissa 11.6845 27.7563 61.8606 115.6857 — —

SFSC Present 12.6874 33.0654 72.4047 131.4744 210.7581 310.4609

Fourier-p 10� 10 12.7092 32.5754 72.4449 132.1688 209.8969 309.0518

Finite strip 10� 1 12.6891 32.9726 72.1954 131.9554 210.0636 309.7426

Q4 10� 10 12.7590 31.6712 71.1785 129.9998 208.4291 308.3087

Gorman 12.6874 33.0651 72.3976 131.4287 210.9711 310.2634

Leissa 12.6874 33.0651 72.3976 131.4287 — —

Table 2

Comparison of the frequency parameters l2 for square plates with fully simplify supported (m ¼ 1)

Mode case 1 2 3 4 5 6 7 8

Present p ¼ q ¼ 1 19.7374 49.3523 98.7032 167.7968 256.5581 364.9831 493.2628 641.2265

p ¼ q ¼ 2 19.7379 49.3510 98.7014 167.7913 256.5779 365.0614 493.2912 641.3257

p ¼ q ¼ 3 19.7386 49.3498 98.6991 167.7885 256.5840 365.0610 493.3250 641.3734

p ¼ q ¼ 4 19.7390 49.3489 98.6981 167.7862 256.5968 365.0473 493.3383 641.4046

p ¼ q ¼ 5 19.7392 49.3482 98.6967 167.7849 256.6000 365.0908 493.3476 641.4078

p ¼ q ¼ 6 19.7392 49.3481 98.6963 167.7846 256.6013 365.0924 493.3743 641.4179

Exact 19.7392 49.3480 98.6960 167.7833 256.6097 365.1754 493.4802 641.5243

L. Yongqiang / Journal of Sound and Vibration 294 (2006) 1051–1059 1055
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Table 4

Comparison of the frequencies l for a disc with inner radius clamped supported and outer radius free supported (p ¼ q ¼ 5)

Numbers of nodal diameter Numbers of nodal circle Present (Hz) Exact solution (Hz) Error (%)

1 1 33.6068 33.6092 0.007

2 267.2024 267.2022 0.0001

3 746.2017 745.9713 0.0309

2 1 54.2807 54.2538 0.0496

2 356.0836 355.9007 0.0514

3 866.1829 865.99 0.0223

3 1 120.1101 120.006 0.0867

2 511.7174 511.465 0.0493

3 1083.4863 1083.2962 0.0175

4 1 210.3464 210.2548 0.0435

2 706.2521 706.0 0.0358

3 1364.5754 1363.49 0.0795

Table 3

Comparison of the frequency parameters l2 for a plate of b/a ¼ 0.4 with two opposite edges clamped supported (m ¼ 1, n ¼ 0:3)

Mode case 1 2 3 4 5

CCCC Present 23.646 27.810 35.427 46.619 61.463

Leissa 23.648 27.817 35.446 46.702 61.554

CCCS Present 23.439 27.016 33.781 44.047 57.914

Leissa 23.440 27.022 33.799 44.131 58.034

CCCF Present 22.578 24.619 29.234 37.133 48.197

Leissa 22.577 24.623 29.244 37.059 48.283

CSCF Present 22.542 24.285 28.293 35.258 45.591

Leissa 22.544 24.296 28.341 35.345 45.710

CFCF Present 22.347 23.078 25.615 30.571 38.585

Leissa 22.346 23.086 25.666 30.633 38.687

r

R

Fig. 2. A disc with inner radius clamped supported and outer radius free supported.
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The frequencies of the disc using ten finite strip Fourier p-elements are computed and compared with exact
solutions [10] in Table 4. The computed results show that the finite strip Fourier p-element can obtain the very
accurate results with a simple mesh and a few trignometric terms.
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4. Conclusions

A finite strip Fourier p-element method for the vibration analysis of plate is presented. For in-plane
vibration problems, the present finite strip Fourier p-element is a better choice to obtain solutions with high
accuracy.

For the in-plane vibrations of square plates with two opposite edges simplify supported, comparison with
the results computed by the finite strip Fourier p-elements, the Fourier p-elements, the finite strip method and
the traditional finite elements was carried out to examine the effectiveness. The results showed that the finite
strip Fourier p-element was more accurate in predicting the natural modes than the Fourier p-elements, the
finite strip method and the traditional finite elements. The eight lowest modes of an elastic square plates with
fully simplify supported were analyzed with different number of Fourier terms. The computed results using
five Fourier terms were in good agreement with the exact solutions.

In this way, a disc was analyzed by the finite strip Fourier p-elements and the results were compared with
exact solutions. The computed results show that the finite strip Fourier p-element can give the very accurate
results with a simple mesh and a few trignometric terms.
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Appendix A. The stiffness matrix and the mass matrix

k1;1 ¼ k3;3 ¼
eh3

420ð1� m2Þa3

Z b

0

13a4 €Y
2

m þ 420Y 2
m

n
þ84a2 _Y

2

mð1� mÞ � €Y mY mm
h io

dy,

k1;2 ¼ k2;1 ¼ �k3;4 ¼ �k4;3 ¼
eh3

2520ð1� m2Þa2

Z b

0

11a4 €Y
2

m þ 1260Y 2
m þ 42a2 _Y

2

mð1� mÞ � 252 €Y mY mm
h i

dy,

k1;3 ¼ k3;1 ¼
eh3

280ð1� m2Þa3

Z b

0

3a4 €Y
2

m � 280Y 2
m þ 56a2 €Y mY mm� _Y

2

mð1� mÞ
h in o

dy,

k1;4 ¼ k4;1 ¼ �k2;3 ¼ �k3;2 ¼
eh3

5040ð1� m2Þa2

Z b

0

�13a4 €Y
2

m þ 2520Y 2
m þ 84a2 _Y

2

mð1� mÞ � 84 €Y mY mm
h i

dy,

k2;2 ¼ k4;4 ¼
eh3

1260ð1� m2Þa

Z b

0

a4 €Y
2

m þ 420Y 2
m þ 28a2 _Y

2

mð1� mÞ � €Y mY mm
h in o

dy,

k2;4 ¼ k4;2 ¼
eh3

5040ð1� m2Þa

Z b

0

�3a4 €Y
2

m þ 840Y 2
m � 28a2 _Y

2

m 1� mð Þ � €Y mY mm
h in o

dy,

k1;4þp ¼ k4þp;1 ¼
eh3

6ð1� m2Þap5p5

Z b

0

60a2 €Y
2

m þ p2p2 36 _Y
2

mð1� mÞ þ €Y mða
2 €Y m � 36Y mmÞ

h in
þ12ð�1Þp 5a2 €Y

2

m þ 3p2p2 _Y
2

mð1� mÞ � 3p2p2 €Y mY mm
h io

dy,

k2;4þp ¼ k4þp;2 ¼ �
eh3

6ð1� m2Þp5p5

Z b

0

�36a2 €Y
2

m þ p2p2 20 _Y
2

mð1� mÞ þ €Y mða
2 €Y m þ 36Y mmÞ

h in
þ8ð�1Þp �3a2 €Y

2

m � 2p2p2 _Y
2

mð1� mÞ þ 2p2p2 €Y mY mm
h io
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k3;4þp ¼ k4þp;3 ¼ �
eh3

6ð1� m2Þap5p5

Z b

0

60a2 €Y
2

m þ 36p2p2 _Y
2

mð1� mÞ � €Y mY mm
h in

þð�1Þp 60a2 €Y
2

m þ 36p2p2 _Y
2

mð1� mÞ þ p2p2 €Y mða
2 €Y m � 36Y mmÞ

h io
dy,

k4;4þp ¼ k4þp;4 ¼ �
eh3

6ð1� m2Þp5p5

Z b

0

�24a2 €Y
2

m � 6p2p2 _Y
2

mð1� mÞ � €Y mY mm
h i

þ ð�1Þp �36a2 €Y
2

m
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�20p2p2 _Y

2

mð1� mÞ þ p2p2 €Y m a2 €Y m þ 20Y mm
� 	io

dy,

k4þp;4þq ¼ k4þp;4þq ¼ �
4pq 1þ ð�1Þpþq

 �

eh3

3ð1� m2Þa3ðp2 � q2Þ
4p4

Z b

0

3p2q2p4Y 2
mðp

2 þ q2Þ þ 3a4 €Y
2

mðp
2 þ q2Þ

n
þ2a2p2ðp4 þ 4p2q2 þ q4Þ _Y

2

mð1� mÞ � €Y mY mm
h io

dy; paq,

k4þp;4þp ¼
eh3

720ð1� m2Þa3p4p4

Z b

0

a4 €Y
2

m 45þ p4p4
� 


þ p4p4Y 2
mð45þ 60p2p2 þ p4p4Þ

n
þ2ap2p2ð�15þ 10p2p2 þ p4p4Þ _Y

2

mð1� mÞ � €Y mY mm
h io

dy,

m1;1 ¼ m3;3 ¼ rh
13a

35

Z b

0

Y 2
m dy; m2;2 ¼ m4;4 ¼ rh

a3

105

Z b

0

Y 2
m dy,

m1;2 ¼ m2;1 ¼ �m3;4 ¼ �m4;3 ¼ rh
11a2

210

Z b

0

Y 2
m dy; m1;3 ¼ m3;1 ¼ rh

9a

70

Z b

0

Y 2
m dy,

m1;4 ¼ m4;1 ¼ �m2;3 ¼ �m3;2 ¼ �rh
13a2

420

Z b

0

Y 2
m dy; m2;4 ¼ m4;2 ¼ �rh

a3

420

Z b

0

Y 2
m dy,

m1;4þp ¼ m4þp;1 ¼ rh
2a½60þ p2p2 þ 60ð�1Þp�

p5p5

Z b

0

Y 2
m dy,

m2;4þp ¼ m4þp;2 ¼ rh
2a2½36� p2p2 þ 60ð�1Þp�

p5p5

Z b

0

Y 2
m dy,

m4;4þp ¼ m4þp;4 ¼ �rh
2a2½�24þ ð�36þ p2p2Þð�1Þp�

p5p5

Z b

0

Y 2
m dy,

m4þp;4þq ¼ m4þq;4þp ¼ �rh
48apqðp2 þ q2Þ½1þ ð�1Þp�

p4ðp2 � q2Þ
4

Z b

0

Y 2
m dy; paq,

m4þp;4þp ¼ �rh
a

60
1þ

45

p4p4

� �Z b

0

Y 2
m dy,

where p; q ¼ 1; 2; . . ..
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